

 AD_________________
 (Leave blank)

Award Number:
W81XWH-07-1-0714

TITLE:
Applying A Multi-Voice Speech Recognizer to the BMIST Task

PRINCIPAL INVESTIGATOR:
Gregory J. Gadbois, Ph.D.

CONTRACTING ORGANIZATION: HandHeld Speech
 Amesbury MA 01913

REPORT DATE:
October 2008

TYPE OF REPORT:
Final

PREPARED FOR: U.S. Army Medical Research and Materiel Command
 Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT:
Approved for public release; distribution unlimited

The views, opinions and/or findings contained in this report are
those of the author(s) and should not be construed as an
official Department of the Army position, policy or decision
unless so designated by other documentation.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE
19-10-2008

2. REPORT TYPE
Final

3. DATES COVERED
20 Sep 2007-19 Sep 2008

4. TITLE AND SUBTITLE

5a. CONTRACT NUMBER

Applying A Multi-Voice Speech Recognizer to the BMIST Task 5b. GRANT NUMBER
W81XWH-07-1-0714

 5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Gregory J. Gadbois, Ph.D.

5d. PROJECT NUMBER

 5e. TASK NUMBER

Email: greg@handheldspeech.com

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT
 NUMBER

HandHeld Speech
Amesbury MA 01913

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
U.S. Army Medical Research and Materiel Command

Fort Detrick, Maryland 21702-5012
 11. SPONSOR/MONITOR’S REPORT
 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Speech recognition topics are explored. An orally driven user interface to form filling was developed. Along the way, unsupervised adaptation methods, noise
injection and novel enrollment/”model search” methods were studied. On the strength of the discovered techniques, an application moved from a research
topic to a “program of record”.

15. SUBJECT TERMS
 multi-voice speech recognition, noise-injection

16. SECURITY CLASSIFICATION OF:

17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
USAMRMC

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

UU

 19

19b. TELEPHONE NUMBER (include area
code)

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

Table of Contents

 Page

Introduction…………………………………………………………………………………… 5

Body…… 6

Key Research Accomplishment…………………………………………… 19

Reportable Outcomes ……………………………………………………………… 19

Conclusion………………………………………………………………………………………… 19

References………………………………………………………………………………………… 20

Appendices………………………………………………………………………………………… 20

Introduction:

“Improving hands-free input to the BMIST application” is the
broadest description of the work that was to be done in this
contract. The specifics were to investigate a number of speech
recognition user interfaces strategies (noise injection being a
primary one). And the ultimate contract deliverable is an
integration of the successful research into a working BMIST
application.

An initial observation was that speech recognition does work
when the modeling of the speaker’s voice in his environment is
accurate. A method to obtain accurate speech recognition in real
environments would be to dynamically change modeling. If we
have a “good set of models” created in a quiet environment, and
can track environment changes, we can create a current set of
“good models” by injecting the current noise background into the
“quiet models”, making “noise models”.

In the contract proposal we listed four techniques to
investigate and combine to make “good” models, they were:

1) Conventional enrollment (reading prompts)
2) Noise injection (creating models from quiet models and a noise sample)
3) Supervised Adaptation
4) Unsupervised Adaptation

This report is a chronology of the work done, reporting on the
results of the investigated strategies. And, it is the
companion to the final deliverable, documenting the
deliverable that is the project goal:

At the conclusion of the contract there will be a final deliverable that is a
working BMIST application that incorporates the best strategies found.

An unspecified key detail is: What does “working” mean? Who
judges what working means? The answers are Kim Chism and
Renee Clerici, the project managers responsible for the BMIST
app, who had oversight of this contract. The criteria for
“working” was their app would be deployable, that the users
would be able to use it, and hopefully prefer using it over
any previous method. Their focus is on user frustration,
making an app that a user “likes” using. They care little
about research per se, except how they can use new technology
to enable a “good” solution. These are proper criteria, and
this standard drove the research in unexpected directions
through the course of the contract.

The contract research goals were in two parts:
1) Research in using speech in the User Interface to create

a working solution
2) Research investigating noise injection strategies in

particular

We have delivered on these goals. In the body of this report
we will give the details of that work.

The ultimate deliverable is the current version of “AHLTA
Mobile”. (See the TATRC group for a demonstration -- they
have been showing it broadly.) It has generated wide
interest, and is perceived to be “a solution”. On the strength
of its performance, the AHLTA Mobile application has been
recognized as a “Program of Record”, it is not just a research
project anymore. In response to its new status, the project
has been moved from TATRC to DHIMS. The work done under this
contract has been very successful.

Body:

The development group of TATRC had four reasons for this
contract. First, the speech recognizer is accurate; it must be
accurate to be useful. Second, it takes up little memory, so
it can run on smaller platforms like a handheld. Third, they
recognized the power that speech recognition in noisy and
multi-speaker backgrounds would have. These situations are
commonly encountered, and are very difficult for standard
speech recognizers. Fourth, they appreciated that both speech
recognition and speech user interfaces are very specialized
fields and involving a speech UI expert would greatly enhance
the likelihood of a successful project.

In our kick-off meeting we set up the project plan. The TATRC
group outlined a basic application to use as a vehicle to
explore voice interfaces. They set up a joint software project
on the Internet so that both a group inhouse at Fort Detrick
and HandHeld Speech consultants in Massachusetts, could work
on it. Using version control, all the changes were documented.
When the changes were substantial, these changes were rolled
up into a new version of the application. The team consisted
of Mike Vandre and John Pajak at Fort Detrick MD, and Greg

Gadbois, in Amesbury MA. Mr. Vandre and Mr. Pajak provided the
test application. Mr. Gadbois implemented all the software
dealing directly with speech.

The original app was called “ffw” and already existed in-house
at Fort Detrick. It ran on a tablet personal computer and used
a touch driven interface. The goal of the ffw application was
to document first responder data from the medic (in the field
or in the ambulance) so that it could be sent electronically
to the field hospital. The medic would fill out a form, by
completing different dialog screens by tapping on-screen
buttons.
It was originally designed in response to asking prospective
end users what they wished they had.

The first four months of work was used to modify the interface
of this application from a touch driven interface to one that
was both touch and speech driven. The first deliverable
“Integrating HHS SDK into BMIST” which was planned to require
two man-months was delivered on time.

This required quite a bit of engineering. The c# wrapper over
the “hhsDemon” recognition service evolved tremendously. I
added new features to the SDK to simplify the implementations
needed in the ffw app. Large revisions were made in the
underlying libraries.

After four months, the application was functional enough to
get subject matter expert (SME) feedback. The goal was to get
assessments about the existing functionality and an evaluation
of strengths and weaknesses.

The SME evaluations were very interesting. They believed that
the speech recognition aspect of the interface worked
sufficiently to do the job. However, they didn’t want the
hybrid application that required the first responder to look
at the screen. Given that the speech recognition was very
good, they wanted an application that didn’t require the first
responder to look away from the patient to enter data. With
the hybrid touch and speech driven application, they had the
job of providing care, and a second job of documenting the
care, which either could interfere with their ability to
provide the care or would have to rely on their memories of
what they had done (a source of error). Their goal was to have
an application that acted like a smart assistant who was
transcribing their data. This new interface would be purely
voice driven.

In response to those realizations, a brand new application was
conceived. Inhouse it was called TraumaTalk – it is the
prototype for AHLTA-Mobile. While we learned a lot in building
ffw, it was actually a blessing that we got to throw out the
ffw codebase and start from scratch. We were able to redesign,
eliminating some basic design flaws that were inherent in the
touch-centric design.

TraumaTalk was to be purely voice driven and not require
interaction with the machine either by touch or reading
displays. The TATRC group conceived the form filling as a
dialog, the system prompting with questions (via TTS), the
user responding, and depending on answers, the system asking
appropriate following questions. The content of a form was
conceived as essentially lists of questions and their
accompanying responses. The TATRC design group stored the
contents of a form as a simple database (in an html format),
separating it from a generic machine that loaded such
databases. In this manner, it is easy to change the questions
and logic flow by just editing an html text file. In fact
TraumaTalk is a generic solution to form filling – change the
database and you are filling out a different form. Later, the
TATRC engineers built tools to create and edit html databases.
A software engineer is not needed to create or edit a new
form. Using the tools, anyone can create/edit the databases
that the generic TraumaTalk machine loads.

The generic machine loads an .html database. When it loads, it
creates a state machine with one start state corresponding to
the start question. As it loads each question, it generates a
speech recognition rule containing the acceptable responses.
The questions are very specific; there are typically a small
list of single-word or short-phrase responses that are
appropriate. At any given time during a dialog, there is one
current question and a short list of the things the user might
reasonably say that are active in the speech recognizer. The
speech recognition problem is very easy. There is no open
natural language problem to deal with, where the system would
have to recognize unexpected utterances. When the speech
recognition problem is kept easy enough, the system works
well, even in noise.

One important design flaw of ffw was addressed at the outset,
an “undo”.

Speech recognition is inherently statistical and can fail. It
is not a disaster to mis-recognize some speech if it is easy

to back out of a mistake and try a different path. A multiple
undo/redo is an essential feature for a speech recognition
app.
The undo was a feature that was never implemented in ffw (it
was proving to be a bear to retrofit). I built an undo
capability into TraumaTalk in its basic structures.

I played with our initial version of TraumaTalk. The speech
recognition and the interface all worked, but after a bit, the
interaction became irritating. The problem was that the
interface was designed for a novice user not for an expert.
The same questions that were reasonable the first few times
became tedious with increased expertise. Having filled out
forms a few times, the questions could be predicted. The user
had to, wait for utterances to finish such as “What
medications were given?” This was inefficient. I wanted a one
word question e.g. “Medications?” So I came up with the idea
of a short-questions/long-questions option. The idea is, once
you have some expertise and know the questions, you only need
a one word cue to remind you where you are in the form, and
what the current question is.

Next I added a confirmation/no-confirmation option, where it
would echo the speech recognition result. The system
optionally speaks back what it understood the speaker to say.

I eventually came up with a clarifying understanding of how
the user interface app should work by using a thought
experiment. Suppose there were two people filling out forms,
one had the forms in front of him and was asking questions and
writing answers, the other was making all the measurements and
saying the answer aloud so that the other could write them.
Two people doing this job would start by saying everything,
but eventually (if the people got good at it) the dialog would
get very terse. Only the minimal important words would be
spoken. They would start with long questions, but quickly
evolve to single word cues for the questions. When confirming
an answer, only the most relevant words would be repeated. In
cases where the evolution of states is uniquely determined by
the responses, the confirmation is the next question, and no
explicit verbal confirmation is needed.

In other cases for example where there is a yes/no answer and
the state machine evolves to the same state for both answers,
confirmation might take the form of answering yes with “will
do” and no with nothing. In the situation where the medic says
“blood pressure 140 over 70”, confirmation echoes “140 over
70”. The echoed response is the minimal information and in

particular is the information that the recognizer is most
likely to mis-recognize.

Another example of confirmation, suppose the system has just
queried “What medications were given?” if the user says “Short
questions”, the system confirms by saying “Medications?” The
goal of confirmation is to communicate the most information
with the fewest words. Repeating the question cue affirms the
switch to terse mode and helps him stay on track in the form.

The clarifying ideas are:

1) Make your questions very specific, and the natural
responses should be single-words or short-phrases (get rid of
the natural language problem).

2) What is the minimal spoken information to indicate
questions and confirmations? (maximize information content
while minimizing syllables)

3) Always keep in the back of your mind: How would two people
who were are either learning the job or becoming expert at it
operate?

Support was added to the html database so the terse modes are
fully supported.

The resulting speech recognition application is so transparent
it is a joy to use. The user soon looses awareness of the
speech recognizer, he can focus on making his measurements and
doing his or her job. The application becomes a job
performance aid rather than an impediment.

The interesting perspective is to compare this user interface
to standard ones used for automated answering and routing of
phone calls. The telephony solutions are similarly eyes-free
applications. However, they are inefficient and unpleasant to
use. These systems represent the state of the art in speech
recognition interfaces

That perspective makes you realize what a huge step forward we
have made with this the user interface of this app. I call
this style of solution a “Terse Directed Dialog” (TDD). It is

an evolution on the telephony-like (small vocabulary)
solution. But it eliminates the frustration of using those
types of systems, while improving efficiency.

I believe it changes the game a lot.

It is important to understand the TDD style solution in the
context of current art.

The crux of the difficulty with speech is “How do you
communicate to the user, what the speech recognizer is looking
for?” There have been two solutions.

1)Telephony type solution, where the speech recognition
problem is reduced to a small vocabulary problem

2)Natural Language (pseudo Natural Language) queries where you
let the speaker say almost anything.

The telephony solutions are attractive because they work.
Current recognizers are good enough that they can reliably do
small vocabulary problems even with noisy input. Their
downside has been user frustration navigating complicated
menu’s.

The Natural Language research is a response to the perceived
failure of telephony style solutions. Unfortunately there are
a number of hard problems with natural language systems.
Chiefly, current recognizers are inadequate to the problem
especially with degraded (noisy) input. There is also a
problem with extracting meaning and creating the appropriate
response. Someday natural language solutions may be
attractive, but they are not reliable today.

The Terse Directed Dialog is a solution that works today, even
on mobile devices. It relies on how smart people are. It is
because people are smart that they find the telephony
solutions irritating. After they have navigated a menu once
or twice, they become impatient when the system treats them as
if they didn’t know what’s going on. Allowing them an
accelerated mode solves that problem. It uses their
intelligence instead of hindering it. People are much more
trainable than computers. A Terse Directed Dialog capitalizes
on that fact.

I think the class of problems that are amenable to a TDD
solution is huge, and deploys today. I envision systems where
after a short getting acquainted time, the user primarily uses

the system in a terse mode. Occasionally, when he is doing
something he rarely does, he false back to “Long Questions”,
but quickly returns to a terse mode. He only gets verbose
information where he needs it. And he is the judge of when
that happens.

I believe the idea of a Terse Directed Dialog will have large
impact. TraumaTalk itself might do that inside the DOD.
TraumaTalk is really a TraumaTalk database and a generic TDD
engine. To do other problems in a TDD manner only requires
creating a new database, and tools exist to make that job
easy.

My guess is that the ideas of a Terse Directed Dialog are not
new, that there exist implementations of “expert modes” that
share some or all these features. The value of the research
is having a clear statement of those principles, then pursuing
them systematically in the app. Developing the TDD concept
was both a surprise and by far the most important thing done
in this contract.

After implementing TDD, we took stock of where we stood, we
re-evaluated the application. If you have good models,
TraumaTalk is a joy to use. The basic interaction is a joy.
The important thing to focus on is the ‘if’ clause – “if you
have good models”.

The TraumaTalk TDD engine is using speaker dependent models.
A new user went through a conventional enrollment process
(repeating prompts) to create models. If enrollment takes too
long, people find the process onerous. The strategy employed
in the TDD engine was to do minimal, even insufficient
enrollment, then let the user force further adaptation during
use of the real app. It became clear in some of our testing
that some people came out of enrollment with particularly bad
models.

As an aside to the topic of noise injection (one of the main
topics in the written contract, we will get to noise injection
later in this report), if you don’t have good models working
in quiet, injecting noise does not fix anything. There is no
point in doing any work with noise injection if you can’t
first make models that work well in quiet. Noise injection is
a secondary solution and relies on first making good “quiet
models”.

So the most important thing to improve was “how to create good
initial models in quiet”. Principally we needed to do
“better” with our conventional enrollment. And we would like
to do “better” without seriously adding to the time spent
enrolling.

The way our conventional enrollment process worked was, a new
user read some prompts, some measurements were made, then a
base set of models was warped to fit the measurements. The
“warping” is a fairly crude process. Then further prompts are
collected and a more refined adaptation process continues.
The further the new user’s voice is from the base models, the
more extreme is the warping and the resulting models are less
consistently good.

The Multi-Voice recognizer enables a new strategy that we
decided to investigate. It is quite easy to run multiple sets
of models in parallel and see which models fit the voice
better. We can do “model search”, we don’t have to do warping
with base models that are a bad match to the voice. The idea
is we can collect a catalog of base models spanning user
voices, do model search, then seed the existing model creation
process with a close fit.

We implemented this strategy. Our initial tests suggest this
technique will work very well. Currently our implementation
is incomplete; we have only two sets of base models. With 10
to 20 sets of models and just a “model search”, we should have
a model match that works as good as speaker-independent
modeling. With a larger set of base models and a search
feeding a creation process, we believe we will reliably make
excellent quiet models. It is a future research/engineering
problem to obtain the best tradeoffs between performance and
enrollment time. The next step in this direction is a
significant undertaking and is beyond the scope of this
contract.

In the first ffw app we implemented conventional enrollment,
supervised and unsupervised adaptation. In the new TDD engine
we have implemented an improved enrollment search/creation
method and supervised adaptation. The unsupervised adaptation
implemented in the earlier software was quite interesting and
we have intentions of including such methods in the future.
Before we begin the final discussion of noise injection, we
would first document the research done on unsupervised
adaptation in the ffw app.

The strategy is to watch the behavior of the user to detect
when he has corrected a mis-recognition – detect which
utterances and phrases were involved and do corrective
adaptation. Specifically in the ffw app, the easiest way for
the user to correct a mis-recognition was to just to repeat
the phrase, hopefully the second time the system would get it
right. (When the models are decent, because the second time
around the user says the phrase more carefully, typically the
system does get it right.) In the software we kept the last
couple utterances around and correlated the choice lists of
the previous utterance with the current one.

For example, suppose a user says “temperature 101.5” and the
recognizer top choice was “temperature 109.5”. (Suppose the
second choice was right.) The user repeats saying
“temperature 101.5” again. Suppose this time the system gets
it right. The software looks back one utterance and finds the
current top choice was the high in the choice list of the
previous utterance. We detect that we got it wrong the first
time but now we know what the right answer is. Probably some
of the acoustic models in the word “1” are not so good. We
use the second utterance to adapt the models (without asking
the user). That’s the basic idea.

We can be a little more sophisticated, if the top choice is
the same as the previous top choice, (we see that he is
repeating himself, probably we think we are getting it wrong
twice in a row) we claim the second choice as the answer and
use that for adaptation.

The last variation is that we only mark the utterance as “to
be adapted later” and we wait until we are sure he is done
(that he doesn’t repeat himself again or force an answer
through touch). Only when we believe both that he is happy
with the utterance and he has moved on, do we adapt the
models.

This strategy was seen to work in the ffw app. It had the
effect that “decent” models get sharpened up. When top
choices are right all the time, it does nothing to the models.
 Where there are close calls and occasional mis-recognitions,
models are refined and the close calls are separated. It is a
good unobtrusive method to evolve “decent” models into
“excellent” models. But it does not replace supervised
adaptation. If the user repeats the phrase again and again
and again, and it never comes up right, the method doesn’t
work. You can’t use unsupervised adaptation to make bad
models good. It only augments supervised adaptation.

Supervised adaptation is doing adaptation with an utterance
where the phrase spoken is known (either because the user was
prompted to say the phrase or because he has selected it from
a list). A mature app will have both types of methods.
Supervised adaptation empowers the user and is crucial as a
last resort to fix any problem, unsupervised is desirable
because it so unobtrusive.

The only downside for implementing unsupervised adaptation, is
that tracking high level behavior is a complication making the
app harder to evolve. The codebase is more complicated. When
the app is “young” and changing rapidly, it is best to wait
before implementing unsupervised adaptation. We plan to add
unsupervised adaptation to the TDD engine eventually.

The last part of the research contract was investigating noise
injection. The SDK supported some basic noise injection
features. We will give a quick intro to the ideas of noise
injection next.

When digitized sound is captured, the first thing done is to
window and fourier transform it. The power spectrum in
frequency domain is further massaged and the result is boiled
down to a “speech vector”. The voice model representing a
phoneme is a sequence of characteristic speech vectors.

Here are the steps:

PowerSpectrum = [FFT(DigitalSound)]2 à P = F(
snd)
SpeechVector = Massage(PowerSpectrum) à S = M(P
)

The process “M” can be inverted. We can take a characteristic
speech vector and take it back to a power spectrum. In the
power spectrum we can add the signature of the current
environmental noise. Then we transform this new power
spectrum back to a speech vector.

The process is:

Pmodel = M-1(Smodel)
Pnew = Pmodel + Pnoise
Snew = M(Pnew)

We developed M and M-1 prior to this contract.

Actually there is one caveat that we knew from earlier work.
Typically recognition is more accurate when you leave more
signature of the model and don’t swamp it with the noise
spectrum. You want to inject a scaled value of the average
noise. There is a parameter ‘c’ to optimize based on a noise
measurement.

Pnew = Pmodel + c * Pnoise

One of the first things we did in this contract (for noise
injection) was to correlate measures of the noise with an
optimal value of ‘c’, a noise scaling. We needed a function
that takes a measure of the noise and predicts a good value of
the scaling.

In our signal processing there are some power measurements
that would be convenient to correlate with optimal injection.
 We played with a number of them. A good measure was that
already existed in our signal processing front end was
512*log(pwr) where pwr is the sum of the power in the
voicing part of the spectrum.

This parameter, call it ‘k’, (with the particular mic gain
level we used) ranged from about 40-100 in silence and had
voicing peaks of about 2325. We could measure the silence
just before and after an utterance, and also the average peak
power during the utterance.

In quiet a typical pair was:
(ks, kv)
(50, 2325)

In noise a pair might be:
(1300, 2325)

If gain levels are changed, they add a multiplicative factor
to the raw pwr:

kn = 512*log(pwr * a) = ko + 512*log(a) = ko + constant

Define K = kv -ks; K is a log of the signal to noise ratio.
Then Kn = Ko and is independent of a gain setting.

We measured this parameter K, and correlated it with the
optimal injection of the noise spectrum. Referring back to
the power spectrum formula for injection:
Pnew = Pmodel + c * Pnoise

We tabulated a function c = f(K), that was the optimal
injection value

Generally c is a number between 0 and 1. To maintain integer
arithmetic, we will use a number between 0 and 1024, then
divide by 1024.

c = C/1024;
Pnew = Pmodel + (C * Pnoise)/1024;

C(K) is best describe in a piecewise way.

C(K | 1140<K) = 0; (quiet)
C(K | 690<K<1140) = 1021 - K*2/45; (low noise)
C(K | 610<K<690) = 240 + K; (mid noise)
C(K | K<610) = 685 + K/8; (high noise)

(Depending on how hard the recognition problem, if K<300 the
accuracy may be unusable.)

0

200

400

600

800

1000

1200

0500100015002000

quiet K noise

C
(K

)

quiet

low
noise
mid
noise
high
noise

One last note, there is a hardware/gain/sanity check: in
quiet, K should range from 2230 to 2280 (quiet should be
around 50, voicing near 2325). If the hardware performs
differently, the data should be scaled to the proper range.

So to inject, we need frames of the background noise, and an
utterance to get the signal to noise ratio of voiced-speech to
environmental-noise. It would be best if we kept running
averages of both. We proceeded to make a simple app with a
dialog to collect the background noise and an utterance.
(That app will be demonstrated at our final report meeting.)
The processes of the dialog are easily collected and could be
added as a background process to a normal app, and noise
injection could be done automatically. We could continually
create models in the background and track the noise
environment. We did not apply this logic yet to AHLTA Mobile.
Like unsupervised adaptation, it will add complexity to the
source code making the app harder to evolve. It is something
to be added to a mature app.

Key Research Accomplishment:

1) Developed c# wrappers for the hhsDemon

2) Implemented a Terse Directed Dialog

3) Explored Unsupervised Adaptation

4) Seeding enrollment with “model search”

5) Explored noise measures to control noise injection

These features were significant to the current success –

AHLTA-Mobile is now a program of record.

Reportable Outcomes:

1) Showed another HandHeld Speech customer (a group at Naval

Undersea Warfare Center, Newport RI) how to do “model

search”.

2) Applied for another BAA contract to continue working on

AHLTA-Mobile (to further improve rejection and enrollment

process).

Conclusion:

The most important result of this contract is that the AHLTA-

Mobile app’s user interface is significantly improved. On the

strength of the improvements, it is now a program of record.

Of the features driving it, the most important is the Terse

Directed Dialog. That concept is a general solution to a wide

class of problems.

The next most important thing is “model search”. Model search

holds the promise of speaker-indepent recognition that works

for everyone.

I believe the unsupervised adaptation strategy is of lesser

importance. It is a very nice feature and one likely to be

incorporated into a finished app. But it will not have as

large an impact as both model search and TDD.

Similarly, noise injection is not as important. There may be

some situations where it will make a difference, but the TDD

concept marginalizes the number of those cases. The

application of Terse Directed Dialogs, reduces the perplexity

of the recognition problems – it makes them easy. A recognizer

will be accurate, even in noise, when the problem is easy

enough.

References:

SBIR contract W81XWH-06-C-0082 awarded 1/16/06. During it we

developed the raw noise injection machinery (the “M” and “M-1”

operations).

Appendices:

none

